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Abstract 

An analytical expression for the effective structure 
factor, F~,6 p, generally valid for each polarization 
direction p in the many-beam X-ray case, is derived. 
The second Bethe approximation is utilized with the 
additional assumption that certain small o.n-type 
terms may be neglected. It is shown that the many- 
beam effects observed in both plane-wave- and inte- 
grated-intensity-type experiments may be described by 
the existing standard two-beam expressions provided 
the effective structure factor is introduced. Examples 
based on three- and four-beam interactions are given 
with focus on the absorption-independent effects. In 
particular, the deviation of F36PF~h p in the general 
three-beam case from the corresponding two-beam 
value is shown to depend on the three-phase structure 
invariant and the deviation parameter of the coupled 
beam. The results which agree with full three-beam 
calculations may be applied to determine invariants 
experimentally from any type of three-beam experi- 
ment in principle. Applications to PendeIEisung and 
mosaic-crystal experiments are briefly discussed. The 
accuracy of the method is evaluated from calculated 
dispersion surfaces in three- and four-beam examples. 

Introduction 

The interest in many-beam diffraction effects reflects 
the application of such effects in structure studies 
through the possible experimental determination of 
structure factors and structure invariants (e.g. Kambe, 
1957; Hart & Lang, 1961; Gjonnes & Hoier, 1969; 
Terasaki, Watanabe & Gjonnes, 1979; Post, 1979; 
Chapman, Yoder & Colella, 198 I; Hoier & Aanestad, 
1981; Chang, 1982; Thorkildsen & Mo, 1982). Single 
crystals have as a rule been studied theoretically, and 
the interpretation of the effects observed has typically 
been on a qualitative scale by means of plane-wave 
theory. Even then the interpretation has to be built on 
rather detailed numerical calculations as analytical 
solutions may only be found in very special cases. 
Approximated analytical solutions are therefore highly 
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desirable for studying the dependence of the observed 
intensity on the various experimental parameters, in 
plane-wave cases, but especially in integrated-in- 
tensity-type experiments with X-rays. 

It is clear from available numerical many-beam 
calculations of the dispersion surface and excitation 
coefficients (Haier & Aanestad, 1981) that the main 
intensity contributions may be ascribed to the par- 
ticular dispersion-surface branches which are excited 
also in the corresponding two-beam case. The mini- 
mum distances between these branches, however, are in 
many-beam experiments different from the two-beam 
values, being dependent on the deviation parameters of 
the simultaneously excited beams. This variation in the 
gap width may be associated with a corresponding 
structure-factor variation, and the effective structure 
factor thus defined is larger or smaller than the 
standard value as shown by, for example, Watanabe, 
Uyeda & Fukahara (1968) and Gjonnes & Hoier 
(1971) or Hoier & Aanestad (1981) for the electron 
and X-ray diffraction cases, respectively. 

In the present studies we have focused on the 
determination of analytical expressions for the effective 
structure factors which then generally may be in- 
troduced in existing two-beam X-ray expressions. The 
method utilized is the second Bethe approximation 
(Bethe, 1928; Cowley, 1975) originally developed for 
the electron diffraction case. The necessary additional 
assumptions for the application of this approximation 
in the many-beam X-ray case as well are discussed. 
Some preliminary results have been given by Marthin- 
sen (1981). 

Theory 

The crystal wave field is found from the fundamental 
equation (Pinsker, 1978) 

k ~ -  K 2 
- )(,nm Drop, = O, ( 1 )  k~ DnP ~'m PP' 

p' 

where m and n are the interacting beams, and the 
polarization unit vectors pn and p" are either o or a. 
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Further, Z.m = Zn-m and 

PP' t 
Xnm = Xnm Pn" Pm, 

where 

(2) 

r e i~ 2 
~ , n m - -  - - F n m .  (3) ~vc 

Here re, V c and F,m are the classical electron radius, the 
unit-cell volume and the structure factor, respectively. 
The wave field is written 

D =  ~ D, exp [2n i ( v t -  k,.r)], (4) 
n 

where 

D. = D . .  t~. + Dn~ n.. (5) 

The incident-beam direction K o is determined by the 
parameter Y0 = LP or alternatively by the vector ~ in 
Fig. 1. The latter quantity is preferred in cases where 
the operating reflections originate from one zone only. 
The ~ plane is parallel to the reciprocal plane 
considered through the Laue point as shown schemati- 
cally in Fig. 1. ~ is thus the vector from L to the 
projection of P on the ~ plane. This single parameter 
determines all the deviation parameters s n (or don) for 
all the interacting beams, viz. 

s, = ~.n/K. (6) 

s,,, which is the distance from the reciprocal point n to 
the Ewald sphere, is positive when n is inside the 
sphere. The Anpassung 

K 8  = P A  (7) 

is positive along the inward-directed normal to the 
entrance surface. The alternative quantity 

F =  - K 6 -  KZor/27o (8) 

O ~ g - h  

Sh~ '~ 

Fig. 1. Three-beam geometry with definitions of K& s h and ~. 

was used in a previous paper (Hoier & Aanestad, 
1981), where F is positive in the direction of negative 8 
and X0r is the real part of X0. Here and below 70 and 7,, 
are the direction cosines of K o and K,, respectively. 

For generality we introduce (Pinsker, 1978) 

B np = V / ~ n  D np, (9) 

thus transforming the fundamental equation to the 
following form 

where 

~ GnVPm' Bmp, = K~Bnp, (10) 
m 
p' 

1 
v n m  _ _  l k'~,,PP' ]. (1 1) - -  IS m ~nnPm ' -F ~'~"A, nm GPP' V / ~ n  )Pm 

The quantity ~nPm ' is equal to unity when n = m and 
p = p' and equal to zero otherwise. 

Following Bethe (1928) the incident-beam direction 
is now assumed to be such that one Bragg condition is 
nearly or exactly fulfilled. We thus have two strong 
beams 0 and h, i.e. the direct and the primary beam, 
respectively. The other beams g are termed secondary 
beams and are far enough from the Bragg condition to 
be considered weak, but close enough to be non- 
negligible. The weak-beam amplitudes may thus be 
found from (10) as functions of the strong components 
only, assuming Kt~ ~_ --KXo/2~o: 

~ ~ KX;~m ' 
Bgp = B mp,. 

p' 

(12) 
Utilizing (10), the resulting eigenvalue problem for the 
strong beams 0 and h has the following interaction 
matrix elements: 

A(~rPP' [-[PP' : (~rPP' + - - - n m  - - n m  --nm 

_ 1 Is !re,,pv' ¼K 2 m 2~XAnm 

x 
pp" yp"p '  ] 
ng ~,gm . . 

X ~ ,  Sg + ½-~oZoil ---- Yg/Y0) (13) 
g~=O,h 

p" 

Generally this problem may not be solved analyti- 
cally due to the presence of the ah.ng-type terms. 
Available calculations (Hoier & Aanestad, 1981) show, 
however, that their influence may be considered small 
and only of importance for incident-beam directions of 
very limited angular extent. These terms are hence 
neglected giving AGnPPm ' = 0 forp 4=p' and otherwise 

K 2 pp ,pp 
Z] G npPm __ ~ ~,~g ,~m  (14) 

4 ~ g~.h Sg + ½Kz0(1 -- 7g/Yo) 
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With the polarization system used in standard two- 
beam theory, the 4 x 4 matrix is reduced to two 2 x 2 
blocks representing the two polarization systems p = e 
or re. The following elements are obtained: 

1 
H o ~ -  _ _  K)(,o + AGoP~ 

270 

--  - -  KXon Po" Pn + A GPo~ 
He~ 2V/Yo y h 

1 
- -  KX, hO Ph" Po + A G ~  H g -  2x/y. 

1 1 
Hg~ - Sh -- - -  KZo + AGhP~ • (15) 

~h 27h 

It follows that the minimum distance between the 
dispersion-surface branches, i.e. the dispersion-surface 
gap width, is ~ dependent and appears for an 
incident-beam direction which as a rule differs from the 
one found in the two-beam case. 

The nondiagonal elements of the interaction matrix 
derived lead to the definition of an effective structure 
factor for each polarization direction in the many- or 
n-beam case. From (15) we obtain, using (3), 

F~62' = Fho Ph" Po + 
re ~-, Fhg Fgo Ph'Pg Pg" Po 

2rd('V e ~ sg + ½KZo(1 -- 7g/7o) g~:O,h 
(16) 

This effective structure factor ,  F~6 p, may generally 
replace FhoPh. Po in all the existing two-beam ex- 
pressions provided the weak-secondary-beam assump- 
tion is valid. 

Many-beam examples 

The three-beam case 

The effective structure factor is found from (16): 

re FItg F.*o Pit" Pg Pg" Po 
F~6P = Fh° Ph" P° + 2ra~V~ ~ + 7~Xoo(l ---~g/~) , (17) 

giving the following dispersion-surface gap width: 

K• 2 _ K 6 1  = re 
rd~Vc(Y o yh) 1/= (F~6r Fall)  1/2 . (18) 

From now on we shall neglect absorption and in this 
special case denote the gap width 8~ a'. With three 
beams we thus obtain 

eah,P = aIFa~l 

= a ( [  IFho I Ph'Po 

reIFogl I Fgh[ Po" P~ Pg" Ph 

2XKVc[Sg + ½KZo( 1 - Yg/Yo)] 

COS ((Ph0 + ~00g + / 2 

{ rp I Fog l [ Fgh l Po " Pg P~ " Ph } 2 

1/2 

x [1 - cos 2 (~Ph0 + tP0g + ~Pgh)] , (19) 

where a = re/[~zKVc(YOYh) 1/21 and (PhO is the phase of Fho. 
In addition to the constant term this general 

expression has terms which are either symmetric or 
antisymmetric in sg. For structurally forbidden re- 
flections IFh01 = 0 and e~ ,p falls off as ISg1-1, thus 
explaining the double-scattering effect. 

For I gho I :/: 0 the gap depends on the phase sum. 
When this quantity is x/2, e~, ,p is again symmetric in sg. 
A phase sum of 0 or x results in an asymmetric gap 
which is seen to be larger than the two-beam gap when 
the cosine term and sg have the same sign and smaller 
otherwise. This effect corresponds to the rule sug- 
gested by Chang (1982). 

The angular extent of the three-beam effect is from 
(19) seen to depend on the size of the structure factors 
involved through the product I Fogl lEg hl/IFho I. The 
effect is thus most easily observed in a weak beam 
which is strongly coupled to a strong beam in 
agreement with previous conclusions (Gjonnes & 
Hoier, 1969). 

For a centrosymmetric  crystal we obtain, from (19) 
for I Fho l =/= O, 

COS (q~hO + (OOg + ~gh) 
IF3hb pl = IFho I Ph'P0 1 + [Sg + ½KZo(1 -- YJYo)] 

r e [Fogl I Fg h I Po. P~ Pg. Phl. (20) 

× 2XKVcIFhol Ph" Po J 

The phase dependence of (20) corresponds to the one 
found previously in the electron diffraction case by, for 
example, Kambe (1957). 

The dependence on the experimental parameters 
may also be seen from the values of the deviation 
parameters sg and s h for which the dispersion-surface 
gap width is zero. From (20) we get 

= - ½ K X o ( 1  - 

r e cos  (~hO + (OOg -}- (Ogh) IFogl I Fgh[ Po" P~ Ps" Ph 

27d(VclFhol Ph'Po 
(21) 
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with the accompanying deviation parameter for the 
primary beam: 

Sh : -½KZo(1 - YJ)'o) 

reIFhol [IFhgl 2 (ph.pe) 2 -  IFg012 (pg.p0) 2 ~h/~O ] 

2rdfV c cos (¢Ph0 + ¢P0g + ~Pgh) I Fgol I Fhel 

X Ph" P0/Pg" P0 Ph" Pg" (22) 

It should be noted that although (21) and (22) 
illustrates correctly a general diffraction effect 
(Gjonnes & Hoier, 1971), the expression for sg may be 
invalid for special structure-factor combinations. This 
happens, for example, in three-beam cases with mirror 
symmetry as the one discussed below. Here the correct 
value of Sg is zero and the assumption on which (21)is 
based is consequently invalid. 

The dependence of eah'P and thus also IF~,Pl on the 
various parameters is of course reflected in any type of 
three-beam diffraction experiment. The possible ob- 
servation of the effects is, however, strongly ex- 
periment dependent. One very favourable case is the 
Kikuchi-line pattern observed in electron diffraction 
where three-beam effects have already been discussed 
by Shinohara (1932). In these patterns the observed 
line width is known to be a direct mapping of the 
dispersion-surface gap width e~ ,p. The extensive in- 
tensity anomalies observed near crossing points be- 
tween two or several lines in these patterns (Gjonnes & 
Hoier, 1969) correspond therefore to the gap vari- 
ations derived from (19). The observed contrast 
anomalies close to sg = 0 demonstrate clearly, however, 
the limitations of the present approximations for such 
diffraction conditions. 

In the particular X-ray case discussed by Hoier & 
Aanestad (1981), i.e. the 000, h = 220, g = 022 
three-beam case in Si with Yh = ~g = ~'0, the gap is found 
for s h = O. The relative gap width may thus in the 
present approximation be written (sg =/= 0) 

I F~bP I re I Fh01 P0" Pg Pg" Pk 
: 1 + ( 2 3 )  

IFh01 Ph" P0 2rd~V c sg P0" Ph 

Comparison of the dependence of this expression on sg 
with the corresponding dependence found in the full 
three-beam calculations shows that the long-range 
influence of the secondary beam, g, is remarkably well 
reproduced, and even at relatively small deviation 
parameters the correspondence is good. 

A f o u r - b e a m  case 

The 000, h = 220, g = 3 1 1 , f :  111 case in Si using 
Mo Ka  radiation will be taken as an example. The 
direction cosines are equal and absorption is neglected. 
Further, s h = 0 and s, = s I = s. The polarization 
directions for the 0 and h beams are chosen equal to the 
ones in the standard 0, h two-beam case. o r and o, are 

parallel and orthogonal to h. From (16) the following 
effective structure factor is found for the primary beam 
h = :220: 

r e 

F4b p = Fho Ph" P0 + 2nKVcs (Fhg Ego Ph" Pg Pg" P0 

+ FhyFyo Ph" PIPs" P0)" (24) 

The dispersion surface resulting from a full four- 
beam calculation is shown in Fig. 2, while the result 
from the present approximate treatment is shown in 
Fig. 3. The unit of ~ is 10-6A -1 in both figures 
corresponding to an angular deviation parameter of 
0 .15".  The figures show the variation with ~ of the 
quantity F s = ~o F [see (8)] corrected for a distance 
corresponding to P P '  in Fig. 1. 

Calculated excitation coefficients show that the 
important branches in Fig. 2 are the pairs 1 and 4 or 2 
and 3 for ~ < 0 and the pairs 5 and 8 or 6 and 7 for 

> 0 (Marthinsen, Aanestad & Hoier, 1983). These 

121 
I 

4 I~"~- 3~""-~~ 
. 

_4. 
-12 

-40 -20 0 2'0 4'0 
Deviation parameter 

Fig. 2. Calculated four-beam dispersion surface as a function of 
in units of 10 -6 A-L 

4 

0 

"~ -4  

-8  

-12 

4 

-40 -20 0 20 40 
Deviation parameter 

Fig. 3. Calculated perturbed two-beam dispersion surface as a 
function of ~ in units of 10 -6/~-I. Present approximations. 
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correspond to the two-beam branches. The narrow 
gaps found at the dispersion surface near ~ = 0 are due 
to the %.ngtype terms and will be discussed else- 
where. 

As the branch distance is proportional to the 
effective structure factor, Fig. 2 clearly demonstrates 
the dependence of I F~6Pl on the sign of ~ (or s). With 
the particular structure-factor combination chosen the 
gap is larger or smaller than the two-beam value when 
is positive or negative, respectively. The same de- 
pendence on the sign of ~ is found in Fig. 3 as well. A 
comparison between Figs. 2 and 3 shows that the gap 
widths correspond to within 0.5% when I~1 > 50 and 
approximately to within 6% when I ~1 ~> 20. The Bethe 
gap is larger or smaller than the one found in Fig. 2 
when ~ is positive or negative, respectively. 

Comparison of the variation in Fig. 3 with the 
two-beam gap shows that the difference is larger than 
34 or 1% when I~1 is smaller than approximately 20 or 
600, respectively. The four-beam effect may thus be 
significant even at relatively large deviation param- 
eters. As the angular extent of this effect depends on the 
experimental parameters, it should be noted that the 
structure-factor combination used in the examples is 
not favourable for the demonstration of this particular 
effect. 

Applications 

At large thicknesses, on the other hand, the essential 
variation of R~, 'p is determined by a cosine factor with 
argument 

2nt n 
aT"P = A~, '-------p- +- '4  (28) 

This expression shows the well-known displacement 
n/4 of the fringe position as compared with plane-wave 
theory. The important point in this connection, how- 
ever, is the appearance of the effective extinction 
distance, (26), which varies inversely with the gap 
width. It follows that near positions on the photographic 
plate which correspond to many-beam diffraction con- 
ditions, the fringe position or intensity is in general 
modified as compared with the two-beam values. 

With three beams the dependence of a~, 'p on the 
experimental parameters follows the one found above 
in (17) to (23). If we take a centrosymmetric crystal as 
an example the fringe displacement is therefore asym- 
metric with respect to a sign shift in s r When this sign 
is fixed, however, the fringe bending from the two-beam 
position is towards larger or smaller crystal thickness 
depending on the three-phase structure invariant. In 
conclusion, the three-beam effect is observable at any 
crystal thickness, and (25) explains the variation 
observed in the fringe position and intensity by Hart & 
Lang (1961) and Hoier & Aanestad (1981). 

The present approximation may profitably be utilized in 
integrated-intensity-type experiments as demonstrated 
in the following two examples where absorption is 
neglected. 

Pendell6sung fringes 

If sg is taken as constant, the observed integral power 
in the many-beam case may be written 

2 nt /A ~" p 

R~,P = lZ:Yh f Jo(x) dx, (25) 
2K sin 28 A~, 'p d 

0 
where we in the standard two-beam expression have 
introduced the effective extinction distance: 

AT,,P = 1/eT; p. (26) 

In addition to being proportional to the thickness, RT, 'p 
is, for t ~ A~, 'p, i.e. the kinematic many-beam case, seen 
to be proportional to (eT;P) z and may be written 

R~ ,p ~ IF~nbPl 2. (27) 

The dependence on the phase and size of the structure 
factors involved as well as the deviation parameters 
may thus in principle be extracted from the observed 
intensity variations. With three beams these variations 
correspond to the ones found above in the discussion of 
(17) to (23). 

Scattering from mosaic crystals 

In structure analysis the intensity expression used 
includes a convolution between the perfect-block 
scattering function and the block-orientation distri- 
bution function. Following standard procedure and 
taking the former to have a much more rapid variation 
with the scattering angle than the latter, we find that the 
essential variation in the integrated power is given by 
the two-beam intensity expression (e.g. Zachariasen, 
1945). This treatment may also be applied with many 
beams if we replace the standard structure factor by the 
effective one using (16). As above, the integrated power 
in the kinematic thickness region is proportional to the 
dispersion-surface gap width squared. We thus obtain, 
in the n-beam case 

P~h 'p ~ IF]bPl ~. (29) 

With three beams this n-beam expression simplifies 
considerably as shown above. From (29) it is found 
that P~,'P has a similar variation with the experimental 
parameters as the one found for e~,'; in connection 
with the discussion of (17) to (23). P~,'P is, for example, 
larger than the two-beam value when the cosine factor 
and sg in (27) [see (19)] have the same sign and smaller 
otherwise. The influence of the third beam is further 
dependent on the size of the structure factors involved. 
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Such effects have been observed by Thorkildsen & Mo 
(1982). 

Conclusions 

Available numerical three- and four-beam calculations 
show that a variety of the effects observed can be 
understood from a perturbed two-beam point of view. 
This is also the original basis of the Bethe ap- 
proximation, which in the present studies has been 
shown to be applicable in the X-ray case provided one 
additional assumption is added, i.e. to neglect the 
o h.~g-type coupling terms between the strong beams 
and the weak secondary beams. These terms are, 
however, only of importance at relatively small 
deviation parameters of the secondary beams where the 
weak-beam assumption is already invalid. The re- 
suiting interaction matrix includes absorption, but is in 
the present work applied to derive analytical solutions 
relevant to essentially absorption-independent many- 
beam effects. The utilization of absorption-dependent 
effects in structure studies has been discussed by, for 
example, Post (1979). 

The effective structure factor introduced for each 
polarization direction may generally be applied for the 
interpretation and prediction of many-beam effects. As 
defined FT,'o ° is valid for sg 4= 0 for centrosymmetric as 
well as non-centrosymmetric absorbing crystals, and in 
the special case of three beams the results of Juretschke 
(1982) are included. 

The accuracy of the effective structure factor can be 
seen from the calculated dispersion-surface gap. The 
deviation of the gap width from the one found in a full 
many-beam calculation is less than 0.5% for deviation 
parameters corresponding to IA•gl _> 7" in the 
examples studied and may thus in practice be neglected. 

For each polarization direction the observed in- 
tensity depends on the product F~fP F~i fl and the two 
examples given show that all the basic parameters are 
included in this quantity. Of special interest experi- 
mentally is the three-beam case where the three-phase 
structure invariant appears explicitly leading to a 
product which is larger than, smaller than or equal to 
the two-beam value depending on the phase sum. It 
should also be noticed that F~6P F3oh; may be zero for a 
particular s h, sg combination. Although the appearance 
of this effect is generally correct in the three-beam case, 
(21) is invalid for cases where Sg ~_ 0 and the Bethe 
approach fails. Here more dispersion-surface branches 
have to be taken into account as may be seen from the 
corresponding effects observed near Kikuchi-line inter- 
sections (Gjonnes & Hoier, 1969). Preliminary studies 
have shown that some particular reducible many-beam 
cases may give additional information for these 
incident-beam directions. 

In one way or another the effective structure factor, 
or the dispersion-surface gap, is projected out in any 
type of experiment, e.g. section topographs, plane-wave 
cases, mosaic-crystal or Pendell6sung experiments. In 
the latter case the fringe displacement near the 
three-beam condition follows from (25) provided sg can 
be considered constant. This assumption is, however, 
only partly valid, primarily due to the finite anode 
height. The consequence of the accompanying vertical 
divergence in standard experimental setups is that each 
point on the crystal will diffract according to a range of 
incident-beam directions. The local observed intensity 
therefore follows from an integration over the corre- 
sponding range in Sg, thus smearing out the effect. 

In structure analysis and from a methodic point of 
view the possible experimental determination in three- 
beam cases of a large number of three-phase structure 
invariants from very small crystallites or from mosaic 
crystals is of great importance. In the former case, 
where electron diffraction methods have to be used, 
systematic work in this particular direction is still 
lacking (e.g. Gjonnes, 1981). With mosaic crystals and 
standard X-ray diffraction methods two experimental 
parameters seem to influence the experimental pos- 
sibilities, i.e. the spread in Sg due to the vertical 
divergence and the width of the mosaic distribution 
function. An integration over the actual width Asg is 
expected to smear out the effect in this case as well. The 
effects may be observed, however, as shown by 
Thorkildsen & Mo (1982). 

In addition to the phase dependence the intensity 
observed in any type of three-beam experiment is from 
(19) seen to depend on the size of the structure factors 
involved. The structurally forbidden reflections are here 
explained through the double-scattering terms, and 
otherwise the relative variation in the primary beam 
with Sg is seen to depend on I F0gl I Fghl IF h0 I-1. It is 
thus found that the phase invariant is most easily 
determined experimentally in a primary beam which is 
strongly coupled to a secondary beam with much larger 
structure factor, in accordance with previous electron 
diffraction results (Gjonnes & Hoier, 1969). 
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Abstract 

The DIRDIF procedure (direct methods applied to 
d/fference structures) has been tested on a variety of 
structures. It is shown that errors in the atomic 
positions of approximately 0.3 A are acceptable, that 
the minimum size of the known molecular fragment is 
about 10% of the total scattering power, and that lack 
of knowledge about the unit-cell contents is not 
deleterious 

Introduction 

When part of a structure is known, the DIRDIF 
method (Beurskens et al., 1982) can be effectively used 
to solve the unknown part of the structure. Although 
the various DIRDIF procedures include unique 
features designed for solving enantiomorph and super- 
symmetry problems (see Prick, Beurskens & Gould, 
1983, and references therein), the general DIRDIF 
method has proved to be a very efficient tool for routine 
crystal-structure analyses, particularly if the known 
part is only barely sufficient to solve the structure. The 
automatic computer program uses observed structure 
amplitudes and positions of the known atoms as input 
to a structure-factor calculation and scaling routine. 
This is followed by a weighted tangent refinement of the 
difference structure factors, to yield a greatly improved 
electron density map. 
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To explore the effects of errors or lack of infor- 
mation, we pose the following questions: 

Q1. How small may the known part be so that 
DIRDIF is still helpful? 

Q2. How much error can be tolerated in the 
positional coordinates of the known atoms? 

Q3. What are the effects of 'incorrect atoms' in an 
otherwise correct molecular fragment? 

Q4. What is the effect of unknown chemical 
composition? 
We investigated these aspects using a few known 
crystal structures as test cases. The results are 
summarized in this note. 

Calculations 

All calculations were performed by the program 
DIRDIF using default executional parameters. A 
scaling procedure (Gould, Van den Hark & Beurskens, 
1975) leads to the determination of the scale factor, 
SC, Bp the (overall) isotropic temperature parameter of 
the known part (heavy atom or 'partial structure'), and 
B r the (overall) isotropic temperature parameter of the 
unknown part of the structure ('rest structure'). 

The contribution of the known part to the total 
scattering power is defined by the a priori scattering 
fraction: 

= Z Z 
p l 

where Z is the atomic number, ~p denotes summation 
over the known atoms, and ~t  denotes summation over 
all atoms in the unit cell. 
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